\( \def\wtilde{\widetilde} \def\cat{\textrm} \def\proved{} \def\lbrackk{[\![} \def\rbrackk{]\!]} \def\qandq{\quad \text{and} \quad}\newcommand{\cvdots}[1][]{\quad\ \vdots} \newcommand{\mfrac}{\frac} \newcommand{\dsty}{\displaystyle} \newcommand{\ipfrac}[3][]{\tfrac{1}{#3}(#2)} \newcommand{\unfrac}[2]{{#1}/{#2}} \newcommand{\punfrac}[2]{\left({#1}/{#2}\right)} \newcommand{\upnfrac}[2]{{(#1)}/{#2}} \newcommand{\unpfrac}[2]{{#1}/{(#2)}} \newcommand{\upnpfrac}[2]{{(#1)}/{(#2)}} \newcommand{\parbox}[2]{\text{#2}} \newcommand{\ssty}[1]{{\scriptstyle{#1}}} \def\liso{\ \tilde{\longrightarrow}\ } \def\tsum{\sum} \def\mbinom{\binom} \) \( \def\C{\mathbb C} \def\R{\mathbb R} \def\Z{\mathbb Z} \def\Q{\mathbb Q} \def\F{\mathbb F} \def\smash{} \def\phantomplus{} \def\nobreak{} \def\omit{} \def\hidewidth{} \renewcommand{\mathnormal}{} \renewcommand{\qedhere}{} \def\sp{^} \def\sb{_} \def\vrule{|} \def\hrule{} \def\dag{\dagger} \def\llbracket{[\![} \def\rrbracket{]\!]} \def\llangle{\langle\!\langle} \def\rrangle{\rangle\!\rangle} \def\sssize{\scriptsize} \def\mathpalette{} \def\mathclap{} \def\coloneqq{\,:=\,} \def\eqqcolon{\,=:\,} \def\colonequals{\,:=\,} \def\equalscolon{\,=:\,} \def\textup{\mbox} \def\makebox{\mbox} \def\vbox{\mbox} \def\hbox{\mbox} \def\mathbbm{\mathbb} \def\bm{\boldsymbol} \def\/{} \def\rq{'} \def\lq{`} \def\noalign{} \def\iddots{\vdots} \def\varint{\int} \def\l{l} \def\lefteqn{} \def\slash{/} \def\boxslash{\boxminus} \def\ensuremath{} \def\hfil{} \def\hfill{} \def\dasharrow{\dashrightarrow} \def\eqno{\hskip 50pt} \def\curly{\mathcal} \def\EuScript{\mathcal} \def\widebar{\overline} \newcommand{\Eins}{\mathbb{1}} \newcommand{\textcolor}[2]{#2} \newcommand{\textsc}[1]{#1} \newcommand{\textmd}[1]{#1} \newcommand{\emph}{\text} \newcommand{\uppercase}[1]{#1} \newcommand{\Sha}{{III}} \renewcommand{\setlength}[2]{} \newcommand{\raisebox}[2]{#2} \newcommand{\scalebox}[2]{\text{#2}} \newcommand{\stepcounter}[1]{} \newcommand{\vspace}[1]{} \newcommand{\displaybreak}[1]{} \newcommand{\textsl}[1]{#1} \newcommand{\prescript}[3]{{}^{#1}_{#2}#3} \def\llparenthesis{(\!\!|} \def\rrparenthesis{|\!\!)} \def\ae{a\!e} \def\nolinebreak{} \def\allowbreak{} \def\relax{} \def\newline{} \def\iffalse{} \def\fi{} \def\func{} \def\limfunc{} \def\mathbold{\mathbf} \def\mathscr{\mathit} \def\bold{\mathbf} \def\dvtx{\,:\,} \def\widecheck{\check} \def\spcheck{^\vee} \def\sphat{^{{}^\wedge}} \def\degree{{}^{\circ}} \def\tr{tr} \def\defeq{\ :=\ } \newcommand\rule[3][]{} \newcommand{\up}[1]{\textsuperscript{#1}} \newcommand{\textsuperscript}[1]{^{#1}} \newcommand{\fracwithdelims}[4]{\left#1\frac{#3}{#4}\right#2} \newcommand{\nicefrac}[2]{\left. #1\right/#2} \newcommand{\sfrac}[2]{\left. #1\right/#2} \newcommand{\discretionary}[3]{#3} \newcommand{\xlongrightarrow}[1]{\xrightarrow{\quad #1\quad}} \def\twoheadlongrightarrow{ \quad \longrightarrow \!\!\!\!\to \quad } \def\xmapsto{\xrightarrow} \def\hooklongrightarrow{\ \quad \hookrightarrow \quad \ } \def\longlonglongrightarrow{\ \quad \quad \quad \longrightarrow \quad \quad \quad \ } \def\rto{ \longrightarrow } \def\tto{ \longleftarrow } \def\rcofib{ \hookrightarrow } \def\L{\unicode{x141}} \def\niplus{\ \unicode{x2A2E}\ } \def\shuffle{\ \unicode{x29E2}\ } \def\fint{{\LARGE \unicode{x2A0F}}} \def\XXint#1#2#3{\vcenter{\hbox{$#2#3$}}\kern-0.4cm} \newcommand{\ve}{\varepsilon} \newcommand{\C}{\mathbb C} \newcommand{\N}{\mathbb N} \newcommand{\R}{\mathbb R} \newcommand{\Z}{\mathbb Z} \newcommand{\Q}{\mathbb Q} \renewcommand{\H}{\mathcal H} \newcommand{\Pabn}{P_n^{(a,b)}} \def\logg{\log_{(2)}} \def\loggg{\log_{(3)}} \newcommand{\mm}[4]{\begin{pmatrix} #1 & #2 \cr #3 & #4 \end{pmatrix}} \newcommand{\ontop}[2]{\genfrac{}{}{0pt}{}{#1}{#2}} \)
Abstract
We show that if the derivative of the Riemann zeta function has sufficiently many zeros close to the critical line, then the zeta function has many closely spaced zeros. This gives a condition on the zeros of the derivative of the zeta function which implies a lower bound of the class numbers of imaginary quadratic fields.