\( \def\wtilde{\widetilde} \def\cat{\textrm} \def\proved{} \def\lbrackk{[\![} \def\rbrackk{]\!]} \def\qandq{\quad \text{and} \quad}\newcommand{\cvdots}[1][]{\quad\ \vdots} \newcommand{\mfrac}{\frac} \newcommand{\dsty}{\displaystyle} \newcommand{\ipfrac}[3][]{\tfrac{1}{#3}(#2)} \newcommand{\unfrac}[2]{{#1}/{#2}} \newcommand{\punfrac}[2]{\left({#1}/{#2}\right)} \newcommand{\upnfrac}[2]{{(#1)}/{#2}} \newcommand{\unpfrac}[2]{{#1}/{(#2)}} \newcommand{\upnpfrac}[2]{{(#1)}/{(#2)}} \newcommand{\parbox}[2]{\text{#2}} \newcommand{\ssty}[1]{{\scriptstyle{#1}}} \def\liso{\ \tilde{\longrightarrow}\ } \def\tsum{\sum} \def\mbinom{\binom} \) \( \def\C{\mathbb C} \def\R{\mathbb R} \def\Z{\mathbb Z} \def\Q{\mathbb Q} \def\F{\mathbb F} \def\smash{} \def\phantomplus{} \def\nobreak{} \def\omit{} \def\hidewidth{} \renewcommand{\mathnormal}{} \renewcommand{\qedhere}{} \def\sp{^} \def\sb{_} \def\vrule{|} \def\hrule{} \def\dag{\dagger} \def\llbracket{[\![} \def\rrbracket{]\!]} \def\llangle{\langle\!\langle} \def\rrangle{\rangle\!\rangle} \def\sssize{\scriptsize} \def\mathpalette{} \def\mathclap{} \def\coloneqq{\,:=\,} \def\eqqcolon{\,=:\,} \def\colonequals{\,:=\,} \def\equalscolon{\,=:\,} \def\textup{\mbox} \def\makebox{\mbox} \def\vbox{\mbox} \def\hbox{\mbox} \def\mathbbm{\mathbb} \def\bm{\boldsymbol} \def\/{} \def\rq{'} \def\lq{`} \def\noalign{} \def\iddots{\vdots} \def\varint{\int} \def\l{l} \def\lefteqn{} \def\slash{/} \def\boxslash{\boxminus} \def\ensuremath{} \def\hfil{} \def\hfill{} \def\dasharrow{\dashrightarrow} \def\eqno{\hskip 50pt} \def\curly{\mathcal} \def\EuScript{\mathcal} \def\widebar{\overline} \newcommand{\Eins}{\mathbb{1}} \newcommand{\textcolor}[2]{#2} \newcommand{\textsc}[1]{#1} \newcommand{\textmd}[1]{#1} \newcommand{\emph}{\text} \newcommand{\uppercase}[1]{#1} \newcommand{\Sha}{{III}} \renewcommand{\setlength}[2]{} \newcommand{\raisebox}[2]{#2} \newcommand{\scalebox}[2]{\text{#2}} \newcommand{\stepcounter}[1]{} \newcommand{\vspace}[1]{} \newcommand{\displaybreak}[1]{} \newcommand{\textsl}[1]{#1} \newcommand{\prescript}[3]{{}^{#1}_{#2}#3} \def\llparenthesis{(\!\!|} \def\rrparenthesis{|\!\!)} \def\ae{a\!e} \def\nolinebreak{} \def\allowbreak{} \def\relax{} \def\newline{} \def\iffalse{} \def\fi{} \def\func{} \def\limfunc{} \def\mathbold{\mathbf} \def\mathscr{\mathit} \def\bold{\mathbf} \def\dvtx{\,:\,} \def\widecheck{\check} \def\spcheck{^\vee} \def\sphat{^{{}^\wedge}} \def\degree{{}^{\circ}} \def\tr{tr} \def\defeq{\ :=\ } \newcommand\rule[3][]{} \newcommand{\up}[1]{\textsuperscript{#1}} \newcommand{\textsuperscript}[1]{^{#1}} \newcommand{\fracwithdelims}[4]{\left#1\frac{#3}{#4}\right#2} \newcommand{\nicefrac}[2]{\left. #1\right/#2} \newcommand{\sfrac}[2]{\left. #1\right/#2} \newcommand{\discretionary}[3]{#3} \newcommand{\xlongrightarrow}[1]{\xrightarrow{\quad #1\quad}} \def\twoheadlongrightarrow{ \quad \longrightarrow \!\!\!\!\to \quad } \def\xmapsto{\xrightarrow} \def\hooklongrightarrow{\ \quad \hookrightarrow \quad \ } \def\longlonglongrightarrow{\ \quad \quad \quad \longrightarrow \quad \quad \quad \ } \def\rto{ \longrightarrow } \def\tto{ \longleftarrow } \def\rcofib{ \hookrightarrow } \def\L{\unicode{x141}} \def\niplus{\ \unicode{x2A2E}\ } \def\shuffle{\ \unicode{x29E2}\ } \def\fint{{\LARGE \unicode{x2A0F}}} \def\XXint#1#2#3{\vcenter{\hbox{$#2#3$}}\kern-0.4cm} \newcommand{\ve}{\varepsilon} \newcommand{\C}{\mathbb C} \newcommand{\N}{\mathbb N} \newcommand{\R}{\mathbb R} \newcommand{\Z}{\mathbb Z} \newcommand{\Q}{\mathbb Q} \renewcommand{\H}{\mathcal H} \newcommand{\Pabn}{P_n^{(a,b)}} \def\logg{\log_{(2)}} \def\loggg{\log_{(3)}} \newcommand{\mm}[4]{\begin{pmatrix} #1 & #2 \cr #3 & #4 \end{pmatrix}} \newcommand{\ontop}[2]{\genfrac{}{}{0pt}{}{#1}{#2}} \)


J.B. Conrey and H. Iwaniec, Spacing of zeros of Hecke $L$-functions and the class number problem, Acta Arith. 103 (2002) no. 3, 259-312.
E. Dueñez, D.W. Farmer, S. Froehlich, C. P. Hughes, F. Mezzadri, and T. Phan, Roots of the derivative of the Riemann zeta function and of characteristic polynomials, preprint.
D.W. Farmer and R. Rhoades, Differentiation evens out zero spacing, Trans. Amer. Math. Soc., Vol 37, No. 9, 2005, p3789-3811. arXiv:math.NT/0310252
M.Z. Garaev and C.Y. Yıldırım, On small distances between ordinates of zeros of $\zeta(s)$ and $\zeta'(s)$, Int. Math. Res. Notices {\bf 2007} (2007) Art. ID rnm091, 14 pp.
A. Ivıć, On small values of the Riemann zeta-function on the critical line and gaps between zeros, Lietuvos Mat. Rinkinys {\bf 42} (2002), 31-45
H. Ki, The zeros of the derivative of the Riemann zeta function near the critical line, Int Math Res Notices (2008) Vol. 2008, Art. ID rnn064, 23 pp. arXiv:0701726
Levinson N. More than one third of zeros of Riemann's zeta function are on $\sigma = 1/2$, Adv. Math. {\bf 13}, 383–436 (1974).
N. Levinson and H. Montgomery, Zeros of the derivatives of the Riemann zeta-function, Acta Math. 133 (1974), 49-65.
Mezzadri F. Random matrix theory and the zeros of $\zeta'(s)$. J. Phys. A: Math. Gen. 36, 2945–2962 (2003).
H. Montgomery, The pair correlation of zeros of the zeta function, Proc. Sympos. Pure Math. 24, Amer. Math. Soc., Providence, R. I. (1973), 181–193.
A. Selberg, On the normal density of primes in small intervals,and the difference between consecutive primes, Arch. Math. Naturvid. 47, No. 6 (1943), 87–105.
Soundararajan, The horizontal distribution of zeros of $\zeta'(s)$, Duke Math. J. (1998) {\bf 91}, no 1, 33-59.
Soundararajan, Moments of the Riemann zeta-function, 11 pp., to appear in Annals of Math. arXiv:0612106.
Speiser A. Geometrisches zur Riemannschen Zetafunktion, Math. Ann. {\bf 110} 514–21 (1934).
E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed., revised by D. R. Heath-Brown, Oxford University Press, Oxford, 1986
K.-M. Tsang, Some $\Omega$-theorems for the Riemann zeta-function, Acta Arith. {\bf 46} (1986), 369–395
Y. Zhang, On the zeros of $\zeta'(s)$ near the critical line, Duke Math. J. (2001) {\bf 110}, No. 3 555-572.