\( \def\wtilde{\widetilde} \def\cat{\textrm} \def\proved{} \def\lbrackk{[\![} \def\rbrackk{]\!]} \def\qandq{\quad \text{and} \quad}\newcommand{\cvdots}[1][]{\quad\ \vdots} \newcommand{\mfrac}{\frac} \newcommand{\dsty}{\displaystyle} \newcommand{\ipfrac}[3][]{\tfrac{1}{#3}(#2)} \newcommand{\unfrac}[2]{{#1}/{#2}} \newcommand{\punfrac}[2]{\left({#1}/{#2}\right)} \newcommand{\upnfrac}[2]{{(#1)}/{#2}} \newcommand{\unpfrac}[2]{{#1}/{(#2)}} \newcommand{\upnpfrac}[2]{{(#1)}/{(#2)}} \newcommand{\parbox}[2]{\text{#2}} \newcommand{\ssty}[1]{{\scriptstyle{#1}}} \def\liso{\ \tilde{\longrightarrow}\ } \def\tsum{\sum} \def\mbinom{\binom} \) \( \def\C{\mathbb C} \def\R{\mathbb R} \def\Z{\mathbb Z} \def\Q{\mathbb Q} \def\F{\mathbb F} \def\smash{} \def\phantomplus{} \def\nobreak{} \def\omit{} \def\hidewidth{} \renewcommand{\mathnormal}{} \renewcommand{\qedhere}{} \def\sp{^} \def\sb{_} \def\vrule{|} \def\hrule{} \def\dag{\dagger} \def\llbracket{[\![} \def\rrbracket{]\!]} \def\llangle{\langle\!\langle} \def\rrangle{\rangle\!\rangle} \def\sssize{\scriptsize} \def\mathpalette{} \def\mathclap{} \def\coloneqq{\,:=\,} \def\eqqcolon{\,=:\,} \def\colonequals{\,:=\,} \def\equalscolon{\,=:\,} \def\textup{\mbox} \def\makebox{\mbox} \def\vbox{\mbox} \def\hbox{\mbox} \def\mathbbm{\mathbb} \def\bm{\boldsymbol} \def\/{} \def\rq{'} \def\lq{`} \def\noalign{} \def\iddots{\vdots} \def\varint{\int} \def\l{l} \def\lefteqn{} \def\slash{/} \def\boxslash{\boxminus} \def\ensuremath{} \def\hfil{} \def\hfill{} \def\dasharrow{\dashrightarrow} \def\eqno{\hskip 50pt} \def\curly{\mathcal} \def\EuScript{\mathcal} \def\widebar{\overline} \newcommand{\Eins}{\mathbb{1}} \newcommand{\textcolor}[2]{#2} \newcommand{\textsc}[1]{#1} \newcommand{\textmd}[1]{#1} \newcommand{\emph}{\text} \newcommand{\uppercase}[1]{#1} \newcommand{\Sha}{{III}} \renewcommand{\setlength}[2]{} \newcommand{\raisebox}[2]{#2} \newcommand{\scalebox}[2]{\text{#2}} \newcommand{\stepcounter}[1]{} \newcommand{\vspace}[1]{} \newcommand{\displaybreak}[1]{} \newcommand{\textsl}[1]{#1} \newcommand{\prescript}[3]{{}^{#1}_{#2}#3} \def\llparenthesis{(\!\!|} \def\rrparenthesis{|\!\!)} \def\ae{a\!e} \def\nolinebreak{} \def\allowbreak{} \def\relax{} \def\newline{} \def\iffalse{} \def\fi{} \def\func{} \def\limfunc{} \def\mathbold{\mathbf} \def\mathscr{\mathit} \def\bold{\mathbf} \def\dvtx{\,:\,} \def\widecheck{\check} \def\spcheck{^\vee} \def\sphat{^{{}^\wedge}} \def\degree{{}^{\circ}} \def\tr{tr} \def\defeq{\ :=\ } \newcommand\rule[3][]{} \newcommand{\up}[1]{\textsuperscript{#1}} \newcommand{\textsuperscript}[1]{^{#1}} \newcommand{\fracwithdelims}[4]{\left#1\frac{#3}{#4}\right#2} \newcommand{\nicefrac}[2]{\left. #1\right/#2} \newcommand{\sfrac}[2]{\left. #1\right/#2} \newcommand{\discretionary}[3]{#3} \newcommand{\xlongrightarrow}[1]{\xrightarrow{\quad #1\quad}} \def\twoheadlongrightarrow{ \quad \longrightarrow \!\!\!\!\to \quad } \def\xmapsto{\xrightarrow} \def\hooklongrightarrow{\ \quad \hookrightarrow \quad \ } \def\longlonglongrightarrow{\ \quad \quad \quad \longrightarrow \quad \quad \quad \ } \def\rto{ \longrightarrow } \def\tto{ \longleftarrow } \def\rcofib{ \hookrightarrow } \def\L{\unicode{x141}} \def\niplus{\ \unicode{x2A2E}\ } \def\shuffle{\ \unicode{x29E2}\ } \def\fint{{\LARGE \unicode{x2A0F}}} \def\XXint#1#2#3{\vcenter{\hbox{$#2#3$}}\kern-0.4cm} \newcommand{\ve}{\varepsilon} \newcommand{\C}{\mathbb C} \newcommand{\N}{\mathbb N} \newcommand{\R}{\mathbb R} \newcommand{\Z}{\mathbb Z} \newcommand{\Q}{\mathbb Q} \renewcommand{\H}{\mathcal H} \newcommand{\Pabn}{P_n^{(a,b)}} \def\logg{\log_{(2)}} \def\loggg{\log_{(3)}} \newcommand{\mm}[4]{\begin{pmatrix} #1 & #2 \cr #3 & #4 \end{pmatrix}} \newcommand{\ontop}[2]{\genfrac{}{}{0pt}{}{#1}{#2}} \)

SectionBibliography

[1]
J.B. Conrey and H. Iwaniec, Spacing of zeros of Hecke $L$-functions and the class number problem, Acta Arith. 103 (2002) no. 3, 259-312.
[2]
E. Dueñez, D.W. Farmer, S. Froehlich, C. P. Hughes, F. Mezzadri, and T. Phan, Roots of the derivative of the Riemann zeta function and of characteristic polynomials, preprint.
[3]
D.W. Farmer and R. Rhoades, Differentiation evens out zero spacing, Trans. Amer. Math. Soc., Vol 37, No. 9, 2005, p3789-3811. arXiv:math.NT/0310252
[4]
M.Z. Garaev and C.Y. Yıldırım, On small distances between ordinates of zeros of $\zeta(s)$ and $\zeta'(s)$, Int. Math. Res. Notices {\bf 2007} (2007) Art. ID rnm091, 14 pp.
[5]
A. Ivıć, On small values of the Riemann zeta-function on the critical line and gaps between zeros, Lietuvos Mat. Rinkinys {\bf 42} (2002), 31-45
[6]
H. Ki, The zeros of the derivative of the Riemann zeta function near the critical line, Int Math Res Notices (2008) Vol. 2008, Art. ID rnn064, 23 pp. arXiv:0701726
[7]
Levinson N. More than one third of zeros of Riemann's zeta function are on $\sigma = 1/2$, Adv. Math. {\bf 13}, 383–436 (1974).
[8]
N. Levinson and H. Montgomery, Zeros of the derivatives of the Riemann zeta-function, Acta Math. 133 (1974), 49-65.
[9]
Mezzadri F. Random matrix theory and the zeros of $\zeta'(s)$. J. Phys. A: Math. Gen. 36, 2945–2962 (2003).
[10]
H. Montgomery, The pair correlation of zeros of the zeta function, Proc. Sympos. Pure Math. 24, Amer. Math. Soc., Providence, R. I. (1973), 181–193.
[11]
A. Selberg, On the normal density of primes in small intervals,and the difference between consecutive primes, Arch. Math. Naturvid. 47, No. 6 (1943), 87–105.
[12]
Soundararajan, The horizontal distribution of zeros of $\zeta'(s)$, Duke Math. J. (1998) {\bf 91}, no 1, 33-59.
[13]
Soundararajan, Moments of the Riemann zeta-function, 11 pp., to appear in Annals of Math. arXiv:0612106.
[14]
Speiser A. Geometrisches zur Riemannschen Zetafunktion, Math. Ann. {\bf 110} 514–21 (1934).
[15]
E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed., revised by D. R. Heath-Brown, Oxford University Press, Oxford, 1986
[16]
K.-M. Tsang, Some $\Omega$-theorems for the Riemann zeta-function, Acta Arith. {\bf 46} (1986), 369–395
[17]
Y. Zhang, On the zeros of $\zeta'(s)$ near the critical line, Duke Math. J. (2001) {\bf 110}, No. 3 555-572.