\( \renewcommand{\ensuremath}{} \def\bold{\mathbf} \def\R{\mathbb R} \def\C{\mathbb C} \def\Q{\mathbb Q} \def\Z{\mathbb Z} \def\N{\mathbb N} \def\T{\mathbb T} \def\germ{\mathfrak} \)
view by: year subject
11 M 41
The highest lowest zero of general $L$-functions Jonathan Bober, J. Brian Conrey, David W. Farmer, Akio Fujii, Sally Koutsoliotas, Stefan Lemurell, Michael Rubinstein, and Hiroyuki Yoshida J. Number Theory 147 2015 364 – 373.
11 F 66
Varieties via their L-functions David W. Farmer, Sally Koutsoliotas, and Stefan Lemurell 2015 preprint.
2015
11 M 26
Pair correlation of the zeros of the derivative of the Riemann $\xi$-function David W. Farmer, Steven M. Gonek, and Yoonbok Lee J. Lond. Math. Soc. (2) 90 2014 1 241 – 269.
11 F 66
Evaluating $L$-functions with few known coefficients David W. Farmer and Nathan Ryan LMS J. Comput. Math. 17 2014 1 245 – 258.
2014
11 F 46
Survey article: Characterizations of the Saito-Kurokawa lifting David W. Farmer, Ameya Pitale, Nathan Ryan, and Ralf Schmidt Rocky Mountain J. Math. 43 2013 6 1747 – 1757.
11 M 26
Mean values of $\zeta'/\zeta(s)$, correlations of zeros and the distribution of almost primes David W. Farmer, S. M. Gonek, Y. Lee, and S. J. Lester Q. J. Math. 64 2013 4 1057 – 1089.
11 F 11
The nontrivial zeros of period polynomials of modular forms Lie on the unit circle J. Brian Conrey, David W. Farmer, and Özlem Imamoglu Int. Math. Res. Not. IMRN 2013 20 4758 – 4771.
11 M 26
Landau-Siegel zeros and zeros of the derivative of the Riemann zeta function David W. Farmer and Haseo Ki Adv. Math. 230 2012 4-6 2048 – 2064.
11 F 37
Maass forms on GL(3) and GL(4) David W. Farmer, Sally Koutsoliotas, and Stefan Lemurell 2012 preprint.
11 M 26
An optimal choice of Dirichlet polynomials for the Nyman-Beurling criterion Sandro Bettin, J. Brian Conrey, and David W. Farmer 2012 preprint.
2012
30 C 15
Approximation by polynomials and Blaschke products having all zeros on a circle David W. Farmer and Pamela Gorkin Illinois J. Math. 55 2011 3 1105 – 1118 (2013).
11 F 46
Testing the functional equation of a high-degree Euler product David W. Farmer, Nathan Ryan, and Ralf Schmidt Pacific J. Math. 253 2011 2 349 – 366.
2011
11 M 50
Roots of the derivative of the Riemann-zeta function and of characteristic polynomials Eduardo Dueñez, David W. Farmer, Sara Froehlich, Christopher Hughes, Francesco Mezzadri, and Toan Phan Nonlinearity 23 2010 10 2599 – 2621.
2010
60 G 99
Palindromic random trigonometric polynomials J. Brian Conrey, David W. Farmer, and Özlem Imamoglu Proc. Amer. Math. Soc. 137 2009 5 1835 – 1839.
2009
11 M 26
Autocorrelation of ratios of $L$-functions Brian Conrey, David W. Farmer, and Martin R. Zirnbauer Commun. Number Theory Phys. 2 2008 3 593 – 636.
11 F 66
Modular forms and $L$-functions with a partial Euler product David W. Farmer, Sally Koutsoliotas, and Stefan Lemurell J. Ramanujan Math. Soc. 23 2008 2 105 – 121.
11 M 06
Lower order terms in the full moment conjecture for the Riemann zeta function J. B. Conrey, David W. Farmer, J. P. Keating, Michael Rubinstein, and Nina Snaith J. Number Theory 128 2008 6 1516 – 1554.
11 F 66
Converse theorems assuming a partial Euler product David W. Farmer and Kevin Wilson Ramanujan J. 15 2008 2 205 – 218.
 
11 M 06
The maximum size of $L$-functions David W. Farmer, S. M. Gonek, and Christopher Hughes J. Reine Angew. Math. 609 2007 215 – 236.
11 M 41
Modeling families of $L$-functions David W. Farmer Ranks of elliptic curves and random matrix theory 53 – 69 London Math. Soc. Lecture Note Ser. 341 Cambridge Univ. Press, Cambridge 2007.
11 F 66
A converse theorem for $\Gamma_0(13)$ J. B. Conrey, David W. Farmer, B. E. Odgers, and Nina Snaith J. Number Theory 122 2007 2 314 – 323.
15 A 52
11 F 66
L-functions and higher order modular forms David W. Farmer and Sarah Zubairy 2006 preprint.
60 G 99
Crystallization of random trigonometric polynomials David W. Farmer and Mark Yerrington J. Stat. Phys. 123 2006 6 1219 – 1230.
11 M 26
Random polynomials, random matrices and $L$-functions David W. Farmer, Francesco Mezzadri, and Nina Snaith Nonlinearity 19 2006 4 919 – 936.
2006
11 M 26
Maass forms and their $L$-functions David W. Farmer and Stefan Lemurell 2005 preprint.
11 M 06
Basic analytic number theory David W. Farmer Recent perspectives in random matrix theory and number theory 185 – 200 London Math. Soc. Lecture Note Ser. 322 Cambridge Univ. Press, Cambridge 2005.
11 F 37
Deformations of Maass forms David W. Farmer and Stefan Lemurell Math. Comp. 74 2005 252 1967 – 1982.
11 M 26
Integral moments of $L$-functions J. B. Conrey, David W. Farmer, J. P. Keating, Michael Rubinstein, and Nina Snaith Proc. London Math. Soc. (3) 91 2005 1 33 – 104.
30 D 15
Differentiation evens out zero spacings David W. Farmer and Robert C. Rhoades Trans. Amer. Math. Soc. 357 2005 9 3789 – 3811.
2005
11 M 41
Autocorrelation of random matrix polynomials J. B. Conrey, David W. Farmer, J. P. Keating, Michael Rubinstein, and Nina Snaith Comm. Math. Phys. 237 2003 3 365 – 395.
2003
11 F 25
The irreducibility of some level 1 Hecke polynomials David W. Farmer and K. James Math. Comp. 71 2002 239 1263 – 1270 (electronic).
2002
11 F 25
Factoring Hecke polynomials modulo a prime J. B. Conrey, David W. Farmer, and P. J. Wallace Pacific J. Math. 196 2000 1 123 – 130.
11 M 26
Mean values of $L$-functions and symmetry J. B. Conrey and David W. Farmer Internat. Math. Res. Notices 2000 17 883 – 908.
11 L 40
Transition mean values of real characters J. B. Conrey, David W. Farmer, and Soundararajan J. Number Theory 82 2000 1 109 – 120.
2000
11 F 66
Average values of cubic $L$-series David W. Farmer, Jeffrey Hoffstein, and Daniel Lieman Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996) 27 – 34 Proc. Sympos. Pure Math. 66 Amer. Math. Soc., Providence, RI 1999.
11 F 67
Hecke operators and the nonvanishing of $L$-functions J. B. Conrey and David W. Farmer Topics in number theory (University Park, PA, 1997) 143 – 150 Math. Appl. 467 Kluwer Acad. Publ., Dordrecht 1999.
1999
11 F 66
The ${ GL}(3)$ Mellin transform for twisted non-cuspidal forms of higher level David W. Farmer and Daniel Lieman Israel J. Math. 108 1998 291 – 326.
1998
11 F 25
The distribution of the eigenvalues of Hecke operators J. B. Conrey, W. Duke, and David W. Farmer Acta Arith. 78 1997 4 405 – 409.
1997
57 M 25
Knots and surfaces David W. Farmer and Theodore B. Stanford Mathematical World 6 American Mathematical Society, Providence, RI 1996 viii+101 0-8218-0451-0.
20 H 15
Groups and symmetry David W. Farmer Mathematical World 5 American Mathematical Society, Providence, RI 1996 viii+102 0-8218-0450-2.
1996
11 M 41
An extension of Hecke's converse theorem J. B. Conrey and David W. Farmer Internat. Math. Res. Notices 1995 9 445 – 463.
11 M 26
Mean values of $\zeta'/\zeta$ and the Gaussian unitary ensemble hypothesis David W. Farmer Internat. Math. Res. Notices 1995 2 71 – 82 (electronic).
11 M 26
Counting distinct zeros of the Riemann zeta-function David W. Farmer Electron. J. Combin. 2 1995 Research Paper 1, approx. 5 pp. (electonic).
1995
 
Mean Values of the Logarithmic Derivative of the zeta Function and the GUE Hypothesis David W. Farmer 1994 preprint.
11 F 66
Mean value of Dirichlet series associated with holomorphic cusp forms David W. Farmer J. Number Theory 49 1994 2 209 – 245.
1994
11 M 26
Long mollifiers of the Riemann zeta-function David W. Farmer Mathematika 40 1993 1 71 – 87.
1993